
 
The Need for Fast Near-Term Climate 

Mitigation to Slow Feedbacks and 
Tipping Points 

 
Critical Role of Short-lived Super Climate Pollutants in the Climate 

Emergency 

 
Background Note 

 
DRAFT: 15 February 2021 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Institute for Governance 
& Sustainable Development (IGSD) 

Center for Human Rights and 
Enviornment (CHRE/CEDHA) 

  



 
 
 

2 

 
About the Institute for Governance & 

Sustainable Development (IGSD) 
 
IGSD’s mission is to promote just and 
sustainable societies and to protect the 
environment by advancing the understanding, 
development, and implementation of effective 
and accountable systems of governance for 
sustainable development. 
 
As part of its work, IGSD is pursuing “fast-
action” climate mitigation strategies that will 
result in significant reductions of climate 
emissions to limit temperature increase and other 
climate impacts in the near-term. The focus is on 
strategies to reduce non-CO2 climate pollutants, 
protect sinks, and enhance urban albedo with 
smart surfaces, as a complement to cuts in CO2. 
It is essential to reduce both non-CO2 pollutants 
and CO2, as neither alone is sufficient to provide 
a safe climate. 
 
IGSD’s fast-action strategies include reducing 
emissions of the short-lived climate pollutants—
black carbon, methane, tropospheric ozone, and 
hydrofluorocarbons (HFCs).  Reducing HFCs 
starting with the Kigali Amendment to the 
Montreal Protocol has the potential to avoid up to 
0.5C of warming by end of century. Parallel 
efforts to enhance energy efficiency of air 
conditioners and other cooling appliances during 
the phase down of HFCs can double the climate 
benefits at 2050, and by 2060 avoid the equivalent 
of up to 460 billion tonnes of CO2.  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
About the Center for Human Rights and 

Enviornment (CHRE/CEDHA) 
 
Originally founded in 1999 in Argentina, the 
Center for Human Rights and Environment 
(CHRE or CEDHA by its Spanish accronym) 
aims to build a more harmonious relationship 
between the environment and people. Its work 
centers on promoting greater access to justice 
and to guarantee human rights for victims of 
environmental degradation, or due to the non-
sustainable management of natural resources, 
and to prevent future violations. To this end, 
CHRE fosters the creation of public policy that 
promotes inclusive socially and environmentally 
sustainable development, through community 
participation, public interest litigation, 
strengthening democratic institutions, and the 
capacity building of key actors. 
 
CHRE addresses environmental policy and 
human rights impacts in the context of climate 
change through numerous advocacy programs 
including initiatives to promote fast action 
climate mitigation policies to contain and 
reverse climate change, to reduce the emission 
of short-lived climate pollutants such as black 
carbon, HFCs and methane, to protect glaciers 
and permafrost environments for their value as 
natural water storage and basin regulators, due 
to their melt impacts on sea level and its 
influence on ocean currents and air streams, as 
well as for their global albedo value and for the 
many other roles glaciers play in sustaining 
planetary ecological equilibrium. CHRE also 
fosters corporate accountability and human 
rights compliance to address the social and 
environmental impacts of key climate polluting 
industries such as oil and gas (including 
hydraulic fracturing), mining, paper pulp mills 
and artisanal brick production.  



 
 
 

3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Institute for Governance 
& Sustainable Development 

Center for Human Rights 
and Enviornment (CHRE/CEDHA) 

 
Unless otherwise indicated, all content in the Background Note carries a Creative Commons license, 
which permits non-commercial re-use of the content with proper attribution. Copyright © 2021 Institute 
for Governance & Sustainable Development and Center for Human Rights and Environment.   



 
 
 

4 

 
The Need for Fast Near-Term Climate Mitigation 

to Slow Feedbacks and Tipping Points  
 

Critical Role of Short-lived Super Climate Pollutants in the Climate Emergency 
 

15 February 2021 
 

Table of Contents 
1. Introduction and summary ...............................................................................................5 

2. Feedbacks and tipping points are key to the planetary emergency ..............................6 

3. Shrinking Arctic shield ......................................................................................................6 

4. Permafrost emissions of CO2, CH4, and N2O ..................................................................9 

5. Methane from Arctic Shelf..............................................................................................10 

6. Increasing melt rate of Greenland Ice Sheet .................................................................10 

7. Persistence of ocean warming .........................................................................................10 

8. Limited role of CO2 mitigation for near-term cooling .................................................10 

9. Maximum role for mitigating short-lived super climate pollutants ............................11 

10. Importance of protecting forests and other sinks .........................................................14 

11. Conclusion ........................................................................................................................15 

References ...............................................................................................................................16 
 

List of Figures 
Figure 1: Projected warming ............................................................................................................. 5 
Figure 2: Climate tipping points ....................................................................................................... 6 
Figure 3: Monthly sea ice extent anomalies ..................................................................................... 7 
Figure 4: Late winter sea ice in the Arctic ........................................................................................ 7 
Figure 5: Changes in permafrost ....................................................................................................... 9 
Figure 6: Climate temperature response to reductions in emissions of CO2, SLCPs, or both ........ 11 

 
  



 
 
 

5 

1. Introduction and summary 
 

This IGSD background note summarizes the science supporting the need for fast near-term climate 
mitigation, including cuts to short-lived climate pollutants and protection of sinks, to slow feedbacks and 
tipping points. A 10-year fast mitigation sprint is critical for achieving the 2050 net zero target and 
otherwise addressing the climate emergency. 
 

• Along the way to achieving the 2050 Net Zero target—or better, a Real Zero target—it is critical 
to select a pathway that not only reduces CO2 but that also reduces the short-lived climate 
pollutants (SLCPs)—black carbon, methane, tropospheric ozone, and HFC refrigerants—as fast 
as possible, along with other fast mitigation strategies, including protection of sinks; this is 
essential for achieving near-term and long-term climate targets, including the 2050 Net Zero 
target. (SLCPs are often referred to as “super pollutants” because of their potency.) 

• Speed must become a key goal for selecting climate solutions,1 in order to provide the most 
avoided warming in the shortest period of time over the next decade or two, to slow the self-
reinforcing feedbacks and avoid tipping points,2 and to protect the most vulnerable people and 
ecosystems.3   

• The window for effective mitigation to slow feedbacks and avoid tipping points is shrinking to 
perhaps 10 years or less,4 including the window to prevent crashing through the 1.5 ºC guardrail.5  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Source: Xu Y., Ramanathan V., & Victor D. (2018) Global warming will happen faster than we think, 
NATURE, Comment, 564:30–32. 

 
o The world could hit the 1.5 ºC guardrail by 2030, due to rising emissions, declining 

particulate air pollution that unmasks existing warming, and natural climate variability.6 
o In the five years between 2020–2024, the annual global temperature is expected to be at 

least 1 ºC warmer than the 1850–1900 average (range of 0.91–1.59 ºC), with a one-in-
four chance that at least one year could be 1.5 ºC warmer, even if only temporarily, 
according to the World Meteorological Organization.7 

Figure 1: Projected warming 
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• The three strategies that are essential for keeping the planet safe are: (i) reducing CO2, (ii) 
reducing short-lived super climate pollutants (SLCPs or super climate pollutants), and (iii) 
removing up to 1,000 billion tons of CO2 from the atmosphere by 2100, according to the IPCC’s 
Special Report on 1.5 ºC.8 

• Cutting the SLCPs can avoid three times more warming at 2050 than CO2 cuts,9 reducing 
projected warming in the Arctic by two-thirds and the rate of global warming by half.10 

 
2. Feedbacks and tipping points are key to the planetary emergency 
 
Evidence from feedbacks and tipping points suggests that we are already in a state of planetary 
emergency, where both the risk and urgency of the emergency are acute. Six tipping points are  projected 
to occur between the current 1 ºC of warming and the 1.5 ºC of warming expected in the next 10 years, 
with another 11 tipping points projected between 1.5 ºC and 2 ºC.11 
 

• Self-reinforcing feedbacks, including the loss of Arctic sea ice, are among the most vulnerable 
links in the chain of climate protection.12  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Source: Lenton T. M., Rockstrom J., Gaffney O., Rahmstorf S., Richardson K., Steffen W., & Schellnhuber 
H. J. (2019) Climate tipping points—too risky to bet against, NATURE, Comment, 575(7784):592–595. 

 
3. Shrinking Arctic shield  
 
Over the past several decades the Arctic air temperature has been warming at three times the global 
average according to NOAA and NASA,13 and up to four times the global average for the area above 
70°N, 14 with even greater warming over the Arctic ocean.15 As a result, the extent of Arctic sea ice—a 
white shield reflecting incoming solar radiating safely back to space— is shrinking.16 

Figure 2: Climate tipping points 
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• From 1994 to 2017, the Arctic lost 7.6 trillion tons of sea ice, contributing to over a quarter of 
global ice loss in that period.17 

o “The rate of [global] ice loss has risen by 57 % since the 1990s – from 0.8 to 1.2 trillion 
tonnes per year…. Even though Earth's cryosphere has absorbed only a small fraction of 
the global energy imbalance [3.2  0.3%] it has lost a staggering 28 trillion tonnes of ice 
between 1994 and 2017.… [T]here can be little doubt that the vast majority of Earth's ice 
loss is a direct consequence of climate warming.”18 

• “The Arctic is rapidly warming and experiencing tremendous changes in sea ice….19  
o The 14 Septembers with the least Arctic sea ice extent have all been in the last 14 years; 

on September 15, 2020, the Arctic sea ice reached its annual minimum as the second 
lowest extent in the satellite record.20 

o Through late October 2020, the Arctic sea ice had not yet begun freezing in the Laptev 
Sea, an area known as the “birthplace of ice” for the Arctic Ocean.21 

• The Arctic could become nearly ice-free in late summer during the September minimum extent 
within a decade or two, further reducing its heat-reflecting ability.22  

o Conditions free of sea ice over multiple summer months likely occurred during the last 
interglacial period, providing further independent support for predictions of ice-free 
conditions in late summer by 2035.23 

o Arctic summer sea ice in the seas surrounding the central Arctic Ocean—the “shelf 
seas”—will likely vanish during the late summer shortly after mid-century, with the 
Barents Sea seeing ice-free conditions in winter before the end of the century.24 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Source: National Snow and Ice Data Center (NSIDC), Sea Ice Index, “Monthly Sea Ice Extent Anomaly 
Graph” (last accessed 6 October 2020) (“This graph shows monthly ice extent anomalies plotted as a time 
series of percent difference between the extent for the month in question and the mean for that month based 
on the January 1981 to December 2010 data. The anomaly data points are plotted as plus signs and the trend 
line is plotted with a dashed grey line.”). 

 
 
 

Figure 3: Monthly sea ice extent anomalies 
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• In the extreme case when all Arctic sea ice is lost for all sunlit months, climate forcing equivalent 
to one trillion tons of CO2 would be added to the climate system—on top of the forcing from the 
2.4 trillion tons of CO2 added in the 270 years since the Industrial Revolution—, and this would 
advance warming by 25 years.25 

o This additional warming would be the equivalent of adding 56 ppm of CO226 to the current 
CO2 concentration, which reached a seasonal peak of 417 ppm in May 2020.27 

o The added forcing in the Arctic would be 21 W/m2; averaged globally would equal 0.71 
W/m2 of global forcing,28 compared to the 1.83 W/m2 added by anthropogenic emissions 
of CO2 since the Industrial Revolution.29  

• If all of the cloud cover over the Arctic dissipates along with the loss of all sea ice, the added 
Arctic warming could be three times as much—the equivalent of three trillion tons of CO2; in 
contrast, if clouds increase to create completely overcast skies over the Arctic, the warming 
would still add the equivalent of 500 billion tons of CO2 to the atmosphere.30 

• Further jeopardizing the future of summer sea ice is the loss of the strong, very old (>4 years old) 
multi-year Arctic sea ice, which comprised only 4.4% of the Arctic Ocean in March 2020; young, 
first-year ice—which is thinner, more fragile, and more susceptible to decline—now comprises 
most of the ice pack.31 

o Less sea ice in the Arctic Ocean allows ocean waves to grow larger, allowing for an 
acceleration of ice breakup and retreat.32 Arctic warming also leads to a greater number 
of cyclones and to more intense cyclones,33 which contribute to Arctic sea ice decline.34 

o Declining Arctic sea ice has created an environment where more of the warmer Atlantic 
Ocean water enters the Arctic Ocean, which can further reduce sea ice thickness.35 

 
 

 
Source: Perovich D., Meier W., Tschudi M., Hendricks S., Petty A. A., Divine D., Farrell S., Gerlan S., Haas C., 
Kaleschke L., Pavlova O., Ricker R., Tian-Kunze X., Webster M., & Wood K. (2020) Sea Ice, in ARCTIC REPORT 
CARD 2020, Thoman R. L., Richter-Menge J., & Druckenmiller M. L. (eds.), National Oceanic and Atmospheric 
Administration (NOAA), 49 (“Fig. 3. Late winter sea ice age coverage map for the week of 12-18 March 1985 
(upper left) and 11-17 March 2020 (upper right). Bottom: Sea ice age percentage within the Arctic Ocean for the 
week of 11-18 March 1985-2020. Data are from NSIDC (Tschudi et al. 2019, 2020).”). 

Figure 4: Late Winter Sea Ice in Arctic 
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4. Permafrost emissions of CO2, CH4, and N2O 
 
The accelerated Arctic warming risks triggering another self-reinforcing feedback—permafrost thaw36— 
which would further amplify warming by releasing CO2 and methane (CH4),37 as well as nitrous oxide 
(N2O), which also destroys stratospheric ozone.38  
 

• Of the approximately 15 million square kilometers of permafrost,39 3.4 million square kilometers 
have already thawed; and with warming of 1.5 ºC approaching, another 4.8 million square 
kilometers could thaw.40  

o Abrupt thaw “will probably occur in <20% of the permafrost zone but could affect half 
of permafrost carbon,” and “models considering only gradual permafrost thaw are 
substantially underestimating carbon emissions.”41 

o The amount of carbon stored in permafrost is nearly twice what is already in the 
atmosphere—1,700 Gt carbon in permafrost versus 850 Gt carbon in the atmosphere.42 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Source: Chadburn S. E., Burke E. J., Cox P. M., Friedlingstein P., Hugelius G., & Westermann S. (2017) 
An observation-based constraint on permafrost loss as a function of global warming, NAT. CLIM. CHANGE 
7(5):340–344 (“Figure 4 | Changes in spatial patterns of permafrost under future stabilization scenarios. 
a,b, The shaded areas show estimated historical permafrost distribution (1960–1990), and contours show 
the plausible range of zonal boundaries under 1.5 C stabilization (a) and under 2 C stabilization (b).”). 
 

o Reduced Arctic snow cover leads to increased risk of black carbon-emitting wildfires43, 
and drier surfaces combined with fires and thawing can increase carbon emissions 
40%.44    

    Figure 4: Changes in permafrost 
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5. Methane from Arctic Shelf 
 

There also is a risk—though probably unlikely—that methane will be emitted from the shallow seabed 
of the East Siberian Arctic Shelf as the Arctic ocean warms,45 which would speed up other global 
warming impacts.46 
 

• Measurements in October 2020 by an international expedition on board a Russian research vessel 
are showing elevated methane release from the Arctic Shelf, according to a story by Jonathan 
Watts in The Guardian, 'Sleeping giant' Arctic methane deposits starting to release, scientists 
find (27 October 2020). The story quotes Swedish scientist Örjan Gustafsson of Stockholm 
University, stating that the “East Siberian slope methane hydrate system has been perturbed and 
the process will be ongoing.” 

• According to an earlier isotopic analysis of methane from an Antarctic ice core record, up to 27% 
of methane emissions during the last deglaciation may have come from old carbon reservoirs of 
permafrost and hydrates; while this “serves only as a partial analog to current anthropogenic 
warming,” the authors stated that it is “unlikely” that today’s anthropogenic warming will release 
the carbon in these old reservoirs.47 

 
6. Increasing melt rate of Greenland Ice Sheet 

 
Other tipping points and feedbacks exist between 1.5 ºC and 2 ºC,48 as confirmed by two of the most 
recent IPCC Special Reports from October 201849 and September 2019.50 
 

• Currently, the best estimate of the threshold for irreversible melting of the Greenland Ice Sheet 
is 1.6 ºC; and while it may take several millennia to see the full extent of the sea-level rise—
which would contribute 5–7 meters if all of Greenland melted—the “timescale of melt depends 
strongly on the magnitude and duration of the temperature overshoot.”51 

o In the past two decades, the melt rate across Greenland increased 250–575%52 and the ice 
discharge from the Greenland Ice Sheet substantially increased; this will likely persist in 
the coming years.53 

• The “evidence from tipping points alone suggests that we are in a state of planetary emergency: 
both the risk and urgency of the situation are acute….”54 

 
7. Persistence of ocean warming 

 
Compounding the risk from self-reinforcing feedbacks and tipping points, warming will continue well 
after emissions stop; about 93% of the energy imbalance accumulates in the oceans as increased heat,55 
and this will return to the atmosphere on a timescale of decades to centuries after emissions stop.56 
 
8. Limited role of CO2 mitigation for near-term cooling 

 
Cutting CO2 emissions by shifting from fossil fuels to clean energy is essential to do as fast as possible, 
but doing so will reduce co-emitted cooling aerosols along with CO2, offsetting climate benefits and 
even producing initial warming over the first decade or more.57 
 

• These reflective particles are emitted during combustion of fossil fuels and currently “mask” 
warming of about 0.51 ºC; and while the accumulated CO2 in the atmosphere will continue to 
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cause warming for decades to centuries, the cooling aerosols will fall out of the atmosphere 
within days to months un-masking more of the existing warming.58 

• Fast cuts to CO2 could avoid 0.1 ºC of warming by 2050 and up to 1.6 ºC by 2100,59 not 
accounting for warming due to the unmasking.60 

o This would require CO2 emissions to peak in 2030 and decline by 5.5% per year until 
carbon neutrality is reached around 2060–2070, after which emissions level off.61  

o If CO2 emissions were to peak in 2020 (this year) and decline at 5.5% per year until 
carbon neutrality is reached around mid-century then level off, this extreme scenario 
could avoid 0.3 ºC of warming by 2050 and up to 1.9 ºC by 2100, although unmasking of 
the cooling aerosol would still lead to net warming in the near term.62 

o A separate study found near-term warming within the next two decades of 0.02–0.1 ºC 
due to cuts to fossil fuel CO2 emissions and associated reductions in cooling aerosols.63 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Source: Shoemaker J. K., Schrag D. P., Molina M. J., & Ramanathan V. (2013) What Role for Short-
Lived Climate Pollutants in Mitigation Policy?, SCIENCE 342(6164):1323–1324. 

 
9. Maximum role for mitigating short-lived super climate pollutants  

 
Aggressive mitigation of short-lived climate pollutants (SLCPs)—methane, tropospheric ozone, black 
carbon, and hydrofluorocarbons (HFCs)—is critical for near-term and long-term climate protection. 
These SLCPs also are known as “super climate pollutants.” 
 

• Cutting SLCPs is the only plausible way to limit warming due to unmasking of cooling aerosols 
over the next 20 years: 

o “In fact, given that the net effect of the fossil-fuel phase-out on temperature is minimal 
during the first 20 years (Fig. 3), reducing those other [non-fossil] emissions is the only 
plausible way in which to decrease warming during that period.”64  

• In contrast to the limited amount of warming reduced at 2050 by cutting CO2, fast cuts to SLCPs 
could avoid up to 0.6 ºC of warming by 2050, and up to 1.2 ºC by 2100,65 which would reduce 
projected warming in the Arctic by two-thirds and the rate of global warming by half.66 

o The IPCC’s Special Report on Global Warming of 1.5 ºC concludes that cutting SLCPs 
is essential for staying below 1.5 ºC.67 

Figure 5: Climate temperature response to reductions in emissions  
of CO2, SLCPs, or both 
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o Similarly, the warning of the climate emergency issued in November 2019 from 11,000 
scientists also emphasizes the importance of cutting SLCPs: 

“We need to promptly reduce the emissions of short-lived climate pollutants, 
including methane (figure 2b), black carbon (soot), and hydrofluorocarbons 
(HFCs). Doing this could slow climate feedback loops and potentially reduce the 
short-term warming trend by more than 50% over the next few decades while saving 
millions of lives and increasing crop yields due to reduced air pollution (Shindell 
et al. 201768). The 2016 Kigali amendment to phase down HFCs is welcomed.”69 

• HFCs are now being phased down under the Montreal Protocol’s Kigali Amendment, with the 
potential to avoid up to 0.5 ºC of warming by 2100.70 

o The initial phasedown schedule of the Kigali Amendment avoids about 90% of the 
potential, or up to 0.44 ºC. 

o More mitigation is available from a faster phasedown schedule,  from collecting and 
destroying HFCs at end of product life, recycling and destroying HFC “banks” embedded 
in products and equipment, early replacement of older inefficient cooling equipment 
using HFC refrigerants, and reducing refrigerant leaks through better design, 
manufacturing, and servicing.71 

o The Kigali Amendment also requires Parties to destroy HFC-23, a by-product of the 
production of HCFC-22, to the extent practicable, and this will provide additional 
mitigation not included in the 0.5 ºC calculation.72 

o Improving energy efficiency of cooling equipment during the HFC phasedown can more 
than double the climate benefits in CO2e by reducing emissions from the power plants 
that provide the electricity to run the equipment.73 

• Black carbon and tropospheric ozone are local air pollutants and typically addressed under 
national or regional air pollution laws, as well as through the voluntary programs of the Climate 
and Clean Air Coalition to Reduce Short-Lived Climate Pollutants (CCAC).74 

o Cutting black carbon and tropospheric ozone can save up to 2.4 million lives every year, 
and increase annual crop production by more than 50 million tons, worth US $4-33 billion 
a year, as calculated in 2011.75 

o California has cut black carbon emissions by 90% under its air pollution laws and 
provides a model for other jurisdictions.76 

• The Arctic is nearly five times more sensitive to black carbon emitted in the Arctic region than 
from similar emissions in the mid-latitudes.77 In the Arctic, black carbon not only warms the 
atmosphere but also facilitates additional warming by darkening the snow and ice and reducing 
albedo, or reflectivity, allowing the darker surface to absorb extra solar radiation and cause 
further melting.78 
o Heavy-Fuel Oil (HFO) used in shipping is a significant source of black carbon, and the 

International Maritime Organization (IMO) has drafted a proposal to ban it in the Arctic 
beginning in July 2024 for some ships, with waivers and exemptions for others until July 
2029.79 (HFO has been banned in the Antarctic since 2011.80) 

o If the HFO ban had been in effect in the Arctic in 2019, as currently drafted, it would 
have banned only 16% of HFO used in the Arctic, and reduced only 5% of the black 
carbon.81  

o However, if the Arctic ban were imposed without the waivers or exemptions, black 
carbon emissions could have been reduced by 30%.82  

• Is is possible to reduce 70% of global black carbon emissions by 203083, including by 
implementing the following measures: 
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o Reducing on-road and off-road diesel emissions by mandating diesel particulate filters 
while eliminating diesel and other high-emitting vehicles and shifting to clean forms of 
transportation.84 

o Eliminating flaring, while shifting to clean energy.85 
o Switching to clean cooking and heating methods.86 
o Banning heavy fuel oil in the Arctic and establishing black carbon emission standards for 

vessels by amending Annex VI of the International Convention for the Prevention of 
Pollution from Ships (MARPOL).87 

o Eusuring fast ratification of the Gothenburg Protocol and the 2012 amendment that 
includes controls for black carbon.88 

• Methane is increasingly being addressed under local and national laws, as well as under voluntary 
programs. At a global level, reducing methane emissions associated with human activity by 50% 
over the next 30 years could mitigate global temperature change by 0.18 ºC by 2050.89 From 
2040–2070, methane mitigation could avoid up to 0.27 ºC of warming, according to a 
forthcoming methane assessment by the CCAC. 

o California’s target is to reduce methane emissions by 40% by 2030.90   
o The U.S. Climate Alliance aims to reduce methane emissions across all sectors by 40–

50% by 2030,91 which includes reducing emissions from the energy sector by 40–45% by 
2025,92 from the waste sector by 40–50% by 2030,93 and from the agricultural sector 
where emissions can be reduced 30% from enteric fermentation94 and up to 70% from 
manure management by 2030.95 

o In the North America Climate, Clean Energy, and Environment Partnership signed in 
2016, the United States, Canada and Mexico agreed to reduce methane emissions from 
the oil and gas sector by 40-45% by 2025 and committed to develop and implement 
federal regulations to reduce emissions from existing new sources in the oil and gas sector 
as well as to develop and implement national methane reduction strategies for key sectors, 
including oil and gas, agriculture, and waste and food management as soon as possible.96  

o The current European Union climate  target is to reduce all greenhouse gas emissions by 
40% compared to 1990 levels by 2030, with a proposal to increase this target to 55%.97 
This will require 35–37% methane emission reductions by 2030 compared to 2005 
levels.98 The EU plans to review all relevant environmental and climate legislation 
bearing on methane emissions, including the Effort Sharing Regulation which sets out 
binding anthropogenic methane reductions for Member States,99 and the National 
Emissions Reduction Commitments Directive.100 

 According to a report commissioned by the European Union on global trends in 
methane emissions,“[r]elative to the year 2010, the most stringent emission 
scenarios (i.e. MTFR or a 2° scenario) lead to a CO2e emission reduction of 2.4 
to 3.7 Gt annually in 2030 and 2.9 to 5.1 Gt in 2050…,” and this would close 15–
33% of the emission gap identified in the 2017 UNEP Emissions Gap Report.101  

o The CCAC calculates for the oil and gas sector that “Absolute reduction target of at least 
45% reduction in methane emissions by 2025 and 60% to 75% by 2030…are realistic and 
achievable targets ….”102 

o The Clean Air Task Force states that available technology can reduce oil and gas methane 
emissions by 75%; additionally, 50% of all sector methane emissions reduction are 
possible at no net cost.103 

• Specific measures to reduce methane emissions include: 



 
 
 

14 

o Strengthening methane mitigation policies by implementing readily available 
technologies, laws, and governance structures to their fullest and considering ways to 
expand methane mitigation through other available avenues.104  

o Addressing leaks105 and reducing venting106 in the oil and gas sector. The Clean Air Task 
Force states that prohibiting venting of natural gas can reduce emission by 95%.107 

o Eliminating flaring from oil and gas operations, while shifting to clean energy.108 
o Improving feeding and manure management on farms. In the United States, this could cut 

emissions from manure by as much as 70% and emissions from enteric fermentation by 
30%.109 

o Upgrading solid waste and wastewater treatment.110 
o Reducing food waste, diverting organic waste from landfills, and improving landfill 

management, which could reduce landfill emissions in the United States by 50% by 
2030.111 

• While not an SLCP, long-lived nitrous oxide (N2O) is the most significant anthropogenic ozone 
depleting greenhouse gas not yet controlled by the Montreal Protocol.112 Through mandatory 
control measures, the Montreal Protocol could spur adoption of technologies to reduce N2O 
emissions, which are contributing the equivalent of about 10% of today’s CO2 warming.113 

o Controlling nitrous oxide (N2O) emissions could provide climate mitigation of about 1.67 
GtCO2e GWP100 by 2050 with 0.94 GtCO2e from agriculture and about 0.6 GtCO2e from 
industry in 2050.114 In the industrial sector, abatement technology has been available and 
utilized by manufacturers in developed countries since the 1990s.115 Moreover, only five 
countries produce 86% of industrial N2O: China, the United States, Singapore, Egypt, and 
Russia.116 

o In the agriculture sector, several solutions have been found to be cost-effective in 
reducing N2O emissions from agricultural processes: precision farming using variable 
rate technology (VRT) and nitrogen inhibitors that suppress the microbial activity that 
produces N2O. Studies have found that use of VRT can increase yield by 1–10%, while 
saving approximately 4%-37% of nitrogen fertilization.117 Another solution, the SOP 
(Save Our Planet)118 product line, stimulates nitrogen-uptake in crops and inhibits GHG 
emissions from manure.119 

o Other strategies are being proposed for removing methane and other non-CO2 greenhouse 
gases from the atmosphere.120 

 
10. Importance of protecting forests and other sinks 

 
Halting the destruction of our forests and other carbon sinks so they continue to store vast quantities of 
carbon and do not turn into sources of CO2 provides critical fast mitigation, while also saving 
biodiversity.121 
 

• Already, 17% of the Amazon forest has been destroyed, and there is an expected tipping point 
when 20 to 40% is lost.122  

• With increased deforestation, including from fires, greater disturbances, and higher temperatures, 
there is a point at which the Amazon rainforest would be difficult to reestablish.123 
 

Under current warming trends, the global land sink, which now mitigates ~30% of carbon emissions, 
could be cut by half as early as 2040, as increasing temperatures reduce photosynthesis and speed up 
respiration,124 calling into question the national pledges under the Paris Accord, which rely heavily on 
land uptake of carbon to meet mitigation goals.125  
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Effective ways to protect forests, peatlands, and other sinks include:  
 

• Promoting forest protection and proforestation to allow existing forests to achieve their full 
ecological potential.126 

• Preserving existing peatlands and restoring degraded peatlands.127 
• Restoring coastal ‘blue carbon’ ecosystems.128 

 
11. Conclusion 

 
The IPCC’s Special Report on 1.5 ºC presents the three essential strategies for keeping the planet 
relatively safe: reducing CO2, reducing SLCPs, and removing up to 1,000 billion tons of CO2 from the 
atmosphere by 2100.129 
 

• Cutting SLCPs is the only known strategy that can slow warming and feedbacks in time to avoid 
catastrophic and perhaps existential impacts130 from Hothouse Earth,131 other than perhaps solar 
radiation management, which could cause unknown and potentially unmanageable side effects.  
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trillion, or 45% is added…. These costs remain the same irrespective of whether the methane emission is delayed by up to 20 
years, kicking in at 2035 rather than 2015, or stretched out over two or three decades, rather than one. A pulse of 25 Gt of 
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triggered at low levels of global warming. The latest IPCC models projected a cluster of abrupt shifts between 1.5 °C and 2 
°C, several of which involve sea ice. This ice is already shrinking rapidly in the Arctic….”). 
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identification of regional tipping points and their sensitivity to 1.5°C and 2°C of global warming, whereas tipping points in 
the global climate system, referred to as large-scale singular events, were already discussed in Section 3.5.2. A summary of 
regional tipping points is provided in Table 3.7.”). 
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cryosphere tipping elements form part of the scientific case for efforts to limit climate warming to well below 2ºC (IPCC, 
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state is possible, though for sufficiently high initial temperature anomalies, total loss of the ice sheet becomes irreversible. 
Crossing the threshold alone does not imply rapid melting (for temperatures near the threshold, complete melting takes tens 
of millennia). However, the timescale of melt depends strongly on the magnitude and duration of the temperature overshoot 
above this critical threshold.”). See also Overland J. et al. (2019) The urgency of Arctic change, POLAR SCI. 21:6–13, 9 (“The 
summer air temperature “viability threshold” that triggers irreversible wastage of the Greenland ice sheet was previously 
estimated to be for an annual global temperature increase of 2–5 °C (Gregory and Huybrechts, 2006; Huybrechts et al., 2011). 
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represent a commitment to ~6 m of sea-level rise from the Greenland Ice Sheet. The rate of ice sheet mass loss is, however, 
limited by the flux at the ice sheet margins [e.g., Pfeffer et al., 2008], leading to a disconnect between committed and realized 
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losses during 2013–2017 — when atmospheric circulation above Greenland promoted cooler summer conditions and heavy 
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and biodiverse terrestrial ecosystems, with additional benefits to society and the economy. … The recent 1.5 Degree Warming 
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land, and neither strategy can remove sufficient carbon by growing young trees during the critical next decade(s). In contrast, 
growing existing forests intact to their ecological potential—termed proforestation—is a more effective, immediate, and low-
cost approach that could be mobilized across suitable forests of all types. Proforestation serves the greatest public good by 
maximizing co-benefits such as nature-based biological carbon sequestration and unparalleled ecosystem services such as 
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cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2
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implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. 
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